فشردگی وw^*-پیوستگی اشتقاق ها روی جبرهای پیچشی وزن دار

thesis
abstract

فرض کنید? یک تابع وزن پیوسته روی r^+ وl^1 (?) جبر پیچشی وزن دار نظیر باشد،براساس نتایج گرونبک، باده و دیلز، اشتقاق های پیوسته ازl^1 (?) به فضای دوگانش l^? (1/?)، به ازای یک تابع مناسب ??l^? (1/?)، دقیقا به فرم ?(d?_? f)(t)=?_0^??f (s) s/(t+s) ?(t+s)ds (t?r^+ ,f?l^1 (? ) )هستند. همچنین هرd_? یک توسیع یکتا به یک اشتقاق پیوستهm(?)?l^? (1/?):d ?_? ازجبراندازه متناظر دارد. نشان میدهیم که یک شرط مناسب روی ? ایجاب میکند کهd ?_?،?-w^*پیوسته است. برای مثال، اگر??l_°^? (1/?) آنگاه d ?_?،w^*-پیوسته خواهد شد. همچنین مثالهایی از توابع ? ارائه می دهیم که d ?_?،w^*-پیوسته نباشد. به طورمشابه ما نشان میدهیم کهd_?و d ?_?تحت شرایط مطلوب روی? ، فشرده هستند. برای مثال وقتی، ??c_° (1/?) با?(0)=0. سرانجام ما مثالهای مختلفی ازتوابع ? ارائه میدهیم به طوری که d_?وd ?_? فشرده نیستند.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

فشردگی اشتقاق ها روی جبرهای باناخ جابجایی

در این پایان نامه فشردگی اشتقاق ها روی جبرهای باناخ جابجایی را بررسی می کنیم‎،‎ نشان می دهیم اگر هیچ اشتقاق فشرده ازجبر باناخ جابجایی ‎aبتوی دوگان مدولش وجود نداشته باشد‎،‎ آنگاه هیچ اشتقاق فشرده از جبر باناخ جابجایی ‎aبتوی- aدو مدول متقارن وجود ندارد‎. همچنین نتایج مشابهی برای اشتقاق های ضعیف فشرده و اشتقاق های کران دار از رتبه متناهی اثبات می کنیم‎.‎

15 صفحه اول

جبرهای پیچشی وزن دار روی نیم خط حقیقی

در این پایان نامه به بررسی توابع وزن روی نیم خط حقیقی می پردازیم و شرایط مختلفی را که تحت آنها فضاهای لبگ وزن دار توابع و اندازه ها، با عمل پیچش جبر باناخ می شوند بررسی می کنیم.

15 صفحه اول

مشتق گیری از جبرهای پیچشی وزن دار رادیکالی

دف اصل? پا?ان نامه، مطالعه مشتق ها? جبرها? پ?چش? م? باشد. بد?ن منظور ابتدا توسطl1(?) را مطالعه م? کن?م. نشان م? ده?م هر مشتق رو?l1(?) مشتق?ها? جبر باناخ ?ک اندازه موضعاً متناه? نما?ش داده م? شود. شرا?ط ?زم و کاف? رو? تابع وزن برا? وجود را ارائه م? ده?م و همچن?ن شرا?ط ?زم و کاف? برا? جابجا?? دوl1(?) مشتق ناصفر رو? مشتق ناصفر را پ?دا م? کن?م. سپس مشتقات از ?ک سگال جبر به خودش و به دوگان ا?ن ...

15 صفحه اول

پیوستگی خود به خود اشتقاق ها روی *c-جبرها و جبرهای -سه تایی

ما مفهوم مدول سه تایی ژوردن را معرفی می کنیم. و شرایط پیرس را تحت عنوان اینکه‏، هر اشتقاق از یک ‎‎‎‎jb^*‎‎‏ -سه تایی ‎‎‎‎e‎‎‏ به توی یک ‎‎‎‎e‎‎‏ -مدول سه تایی (ژوردن) باناخ پیوسته است‏،را تعیین می کنیم. به ویژه‏، هر اشتقاق از یک ‎‎‎‎jb^*‎‎‏ -سه تایی مختلط یا حقیقی به توی فضای دوگانش خود به خود پیوسته است. در ابتدا اثبات می کنیم که هر اشتقاق سه تایی از یک‎‎‎‎c^*‎‎‏ -جبر به یک ‎‎‎‎a‎‎‏-مدول سه تا...

15 صفحه اول

اشتقاق های جردن و پاد اشتقاق ها روی جبرهای مثلثی

فرض کنیم ? یک جبر مثلثی باشد. نگاشت دوخطی ?:?×??? دو اشتقاق نامیده می شود اگر نسبت به هر دو مولفه اش اشتقاق باشد. در این پایان نامه، مفهوم دو اشتقاق اکستریمال را معرفی می کنیم، و ثابت می کنیم که تحت برخی شرایط یک دو اشتقاق از جبر مثلثی ? ، مجموع یک دو اشتقاق اکستریمال و یک دو اشتقاق داخلی است. بررسی خواهیم کرد که تحت چه شرایطی اشتقاق های جبرهای مثلثی داخلی اند. همچنین ثابت می کنیم که هر اشتقاق...

15 صفحه اول

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه بیرجند - دانشکده علوم

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023